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A model which can simulate a variety of thermally driven, rotating 
flows in cylindrical and spherical geometries is described. The 
technique used to approximate the Navier-Stokes equations is finite 
difference in time and in the meridional plane, and spectral in the 
azimuthal direction. The model can calculate axisymmetric flow, 
linearized waves with respect to a fixed or a changing axisymmetric 
flow, nonlinear waves without wave-wave interaction, and fully non- 
linear three-dimensional flow. Detailed numerical studies are made to 
reexamine the steady baroclinic wave case previously investigated by 
Williams [J. Fluid Mech. 49, 417 (1971)] and by Quon [J. Comp. 
Phys. 20,442 (1976)]. With one or more harmonic waves added to the 
fundamental wave 5, the present model in fully nonlinear mode agrees 
very well with Williams. With only a single wave, disagreement exists 
between the present model and that of Quon on the amplitude of the 
wave and its effects on the azimuthal mean circulation. New studies on 
wavenumber selection using the present model indicate that the results 
for this case depend on the initial conditions. 0 1992Academic press. I~C. 

time in the theory of atmospheric general circulation 
(Lorenz [3]). Among these important effects are: ( 1) 
reducing the horizontal temperature gradient and hence 
reducing the vertical wind shear, (2) creating a thermally 
indirect mean meridional circulation (or Ferrell cell), and 
(3) increasing the downward extent of the westerly flow. 
Nonlinear development of baroclinic instability has been 
studied in various investigations, including numerical 
studies of the primitive equations on the sphere (e.g., 
Gall [4]). 

1. INTRODUCTION 

Baroclinic instability can also be studied in a relatively 
pure form in laboratory experiments (e.g., Fowlis and Hide 
[S]). The most common configuration is a cylindrical 
annulus that contains a working fluid rotated about the axis 
of symmetry, which is vertical. Fluid flow is thermally 
driven by maintaining the temperatures of outer and inner 
sidewalls at constants T,, and Ti, respectively. Baroclinic 
instability ensues if the rotation rate (Q) is large enough and 
if the temperature difference falls within a certain range 
(which is a function of Q). 

The study of nonlinear development of large-scale A case of steady-amplitude baroclinic wave flow (here- 
baroclinic instabilities is fundamental to at.mospheric after called a “steady wave”) in the rotating annulus experi- 
dynamics. According to the linear theory of Charney [ 1 ] ment was first studied numerically by Williams [6-81 using 
and Eady [2], an equilibrium basic state consisting of a a three-dimensional finite difference model. His numerical 
vertical shear of horizontal wind and a stable vertical strati- results demonstrated strong nonlinear effects of baroclinic 
fication is unstable to perturbations of an appropriate waves on the axisymmetric flow, including a reduction of 
wavelength range. As perturbations continue to grow, the the zonal jet by about 40 % from the axisymmetric solution, 
eddy processes redistribute heat and momentum, thereby a well organized formation of the Ferrell cell, and a prevail- 
altering the instability (potential energy) of the existing ing westerly surface flow in the middle of the annulus. The 
basic state. Some of the nonlinear effects of baroclinic eddies meridional cross sections of flow fields from a two-dimen- 
upon the azimuthal mean flow has been known for some sional (axisymmetric) model integration and those of 
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azimuthal means from the three-dimensional integration are 
shown in Figs. 1 and 2. These were recalculated with the 
model described in this paper. The results shown are nearly 
identical with those of Williams. This steady-wave case is 
important because it is so well documented that it has been 
regarded as an important benchmark case for new models. 

Quon [9] described a model which used finite differences 
in the meridional plane and a single Fourier mode in the 

(A) 

TEMPERATURE 
CONTOUR INTERVAL = 0.50 

.STREAh4FUNCTlON MAX = 0.0311 
CONTOUR INTERVAL = 0.005 MIN = 0.0 

azimuthal direction, and with which the Williams steady 
wave case was simulated. Quon presented results which 
agreed with those of Williams, and concluded that an 
accurate modeling of the steady-wave case of Williams can 
be achieved by considering only a single-wave feedback 
mechanism upon the azimuthal mean state. One can 
conclude from Quon’s results that wave wave interactions 
are not important for this particular case. 

AZIMUTHAL VELOCITY MAX = 0.516 
CONTOUR INTERVAL = 0.05 MIN = - 0.077 

TEMPERATURE AMPUTUDE 

FIG. 1. Calculated steady axisymmetric solution (AHC) and linear eigenmode temperature amplitude structure (D): (A) Temperature deviation 
(“C); (B) azimuthal velocity (cm s-l); (C) meridional streamfunction (cm’s-I ); (D) linear eigenmode temperature amplitude for wavenumber 5 
(arbitrary units). Dashed contours are negative and the first solid contour is zero. 
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In the course of developing the present model which is of the wave and its effects upon the axisymmetric state. For 
capable of including multiple waves, the authors found a example, only a 10% reduction in the zonal jet is obtained. 
significant disagreement with the results of Quon [9]. It is the purpose of this paper to (1) describe the new numeri- 
While the simulation which include wave-wave interactions cal model, (2) document our disagreement with the results of 
between waves 5 and 10 agrees with those of Williams, the Quon [9] and our agreement with those of Williams [Ml, 
simulation which includes only wave-mean flow interaction and (3) report new results on the wavenumber selection as a 
with a single wave 5 significantly underpredicts the amplitude function of initial conditions for the Williams case. 

(A) (B) 

TEMPERATURE AZIMUTHAL MLOCrrY MAX= 0.298 
CONTOUR INTERVAL = 0.50 CONTOUR INTERVAL = 0.05 MIN = -0.1~ 

STREAMFUNCTlON 
CONTOUR INTERVAL - 0.010 MIN = - 0.0168 

K’) 

TEMPERATUREAMPLWDE 

CONTOUR INTERVAL = 0.10 MAX = 0.723 

FIG. 2. Calculated azimuthal mean fields from the calculation which included waves 5, 10, and 15, and the temperature amplitude for 
wavenumber 5. Panels (A) through (C) are as in Fig. 1, panel (D) is in “C. 
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2. THE MODEL 

MILLER, LU, AND BUTLER 

TABLE I 

List of Symbols 
~_.____ 

R Body force (“gravity”) 
k Longitudinal wavenumber 
P Pressure 
I Radial coordinate; distance from center of sphere 
t Time 
T Temperature 
u Azimuthal velocity (positive for westerly flow) 
L’ Meridional velocity (positive for southerly flow) 

i 
Radial velocity 
Thermal expansivity 

4 Latitudinal coordinate 
ti Thermal diffusivity 
i. Longitudinal coordinate 
n PIPa 
p,, Reference density 
$1 Kinematic viscosity 
Q Rotation rate 
tj Meridional streamfunction 

2.1. Equations and Boundary Conditions 

The present model is based upon the Boussinesq 
Navier-Stokes in rotating spherical coordinates. The 
symbols are listed in Table I. 
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The continuity equation is as follows: 
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(2.5) 

The cylindrical annulus is modeled in the spherical 
framework by using a very large spherical radius and con- 
sidering the domain consisting of an annulus around the 
pole (Miller and Gall [lo]). For the present case, we use the 
same boundary conditions as Williams [68] and Quon 
[9], namely, no-slip on the lower and side boundaries and 
free-slip on the upper surface. The temperatures on the inner 
and outer sidewalls are held constant, and the no heat flux 
condition is imposed on the top and bottom. As in the 
works of Williams and Quon, we assume that the upper 
free surface remains horizontal, ignoring the presence of 
centrifugal effects. 

2.2. Numerical Technique 

The model uses a mixed spectral and finite difference 
technique, similar to that used by Quon [9] for a cylindrical 
model. In the azimuthal direction, each field is decomposed 
into Fourier components of the form A, exp(ikl), where 2 

(2.3) 
is longitude, k is wavenumber (0 for axisymmetric), and Ak 
IS t h e complex amplitude of one of the dependent variables. 
By substituting the Fourier series for each variable into the 
governing equations (2.1~(2.4) and operating on both sides 
by the orthogonalization procedure, one obtains a set of 
equations for each Fourier mode (Quon [9]). These 
equations can be systematically simplified to represent 
mathematical systems of different degrees of complexity. 

(2.4) The present model is able to solve five classes of.problems, 
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which are handled consistently with the same numerical 
algorithms: 

(1) axisymmetric flow; 
(2) linear instability problem with respect to a 

previously computed, fixed axisymmetric state; 
(3) linear instability problem with respect to an 

evolving axisymmetric state as in ( 1); 

(4) nonlinear problem for single and multiple waves, in 
which the only quadratic terms retained are those due to the 
interaction between the wave and axisymmetric parts of the 
flow (hereafter called wave-mean flow interaction); and 

(5) fully nonlinear problem for multiple waves with 
complete wave-mean and wave-wave interactions. 

We refer to the model configuration for each of these 
problems as modes 1 through 5, respectively. Note that 
modes 2 and 3 compute wave structure and its correspond- 
ing growth rate which asymptotically becomes the fastest 
among the modes of the linear system (see Miller and 
Fehribach [ 1 l] for further details on the procedure). 
Mode 4 allows an arbitrary sequence of wavenumbers in the 
model. Mode 5 deals with a simple spectral truncation series 
with wavenumber being multiplied by a fixed harmonic 
factor. Therefore, in addition to the traditional spectral 
resolution 1 to K, the model can solve for the same number 
of wave components but in a higher harmonic; for example, 
the wavenumber set { 5, 10, . . . . 5K) can be used, which 
imposes a five-fold symmetry upon the solution. In the 
mode 5 application, the well-known transform method 
(reviewed by McChenhauer [ 121) is employed to compute 
the spectral transformations of nonlinear terms in the 
equations. Details of this method are given in Section 2.2.5. 

finer resolution can be obtained in regions of strong 
gradients (usually near the boundaries). The initialization 
routine of the model constructs a stretched grid which has 
grid spacings that are determined based on the formula 
sin(rcy) + 6. The variable y is the dimensionless measure of 
physical distance between boundaries (ranging from 0 to 1 ), 
and 6 is an input parameter. For larger 6, the grid stretching 
is less severe. There is also an input parameter which adjusts 
the location where the grid is to be stretched. This is done 
by shifting the phase of the sine function so that the desired 
amount of stretching in the location of interest is achieved. 
After the spacing function is determined, the grid intervals 
are multiplied by the appropriate constant such that they 
are in the proper units. The finite differencing is then 
performed upon the resulting grid. This method of achieving 
variable grid resolution differs from that of Quon, in which 
the equations are first transformed to a stretched coordinate 
system and then discretized with a constant interval. The 
advantage of the current method is its increased flexibility in 
the use of the same model code for a variety of geometries 
and flow types. 

2.2.2. Spatial Differencing. The spatial derivatives in 
the discrete Fourier transformed equations are approxi- 
mated by a control volume discretization procedure. 
Standard second-order centered difference approximations 
are used for the derivatives in each of the equations with the 
following exceptions. 

The advantages of the hybrid technique should now be 
apparent. By using Fourier decomposition, the same model 
can be used to handle any of the above classes of problems. 
By using finite differences in the meridional plane and using 
spherical coordinates, one can consider a broad range of 
domains including a full sphere, a hemisphere (or any other 
sub-domain), a full cylinder, or a cylindrical annulus, and 
one can choose from a variety of boundary conditions. 

2.2.1. Spatial Discretization. The meridional plane is 
partitioned into an arrangement of elements by defining 
grid intervals in the latitudinal and vertical directions. 
A staggered grid system similar to that of Quon [9] is 
employed. The variables U, T, and II are defined in the 
center of the elements; v is defined at the middle of the verti- 
cal boundary of each element (i.e., on the sides), and w is 
defined at the middle of the top and bottom of each element. 
Note that the grid system includes artificial points outside 
the physical domain, for efficiency in computation and 
second-order accuracy in imposing the boundary condi- 
tions. The grid can be stretched in both directions, so that 

For flows involving strong meridional circulations, 
numerical simulations using standard centered differences 
may result in artificial, small-scale features. Since most of 
the flows of interest to the authors involve a Prandtl number 
greater than one, this problem most often appears in the 
temperature field. Hence, the terms representing advection 
of heat by the mean meridional flow are evaluated as a 
weighted average of upwind and centered differences. The 
relative weights given to the two differences are an input 
parameter. A heavier weight on the upwind scheme may 
help suppress oscillatory behavior of the numerical solution. 
However, too much upwind differencing introduces artifi- 
cial viscosity (see Roache [ 13]), which may degrade the 
accuracy of the solution. Thus, the requirement for upwind 
differencing must be evaluated for each individual problem. 
We have experimented with the use of centered differencing, 
upwind differencing, and an average of the two (with equal 
weight on each) for the case to be presented below. No 
significant difference was seen in the results as far as the 
conclusions stated or in the figures shown. However, when 
centered differencing was used for the multiple wave runs 
discussed later, non-physical, small-scale features are 
evident near the top of the domain, including the occurrence 
of temperature excursions beyond the range of the bound- 
ary values. We found that these anomalies can be eliminated 
by reducing the time step (from 0.10 to 0.05 s) or by using 
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upwind differencing. All results shown here use the former 
approach. 

The second exception to the standard centered dif- 
ferencing formulation deals with the evaluation of the flux 
terms in the v and w equations. In that case, the Warn- 
Varnas et al. [ 141 “Scheme B” is used in order to conserve 
kinetic energy while retaining second order accuracy. 

2.2.3. Time Dlflerencing. A two-level scheme is used for 
the time differencing, which minimizes the computer 
memory requirements. First-order forward differencing is 
generally used, although exceptions to this rule are made 
according to numerical stability criteria. Those deviations 
are described in the following paragraphs. 

In order to lessen the time step constraint due to the 
presence of inertial gravity waves, the Coriolis and the body 
force terms in the M: and u equations use newly updated 
values of u and T (i.e., u and Tare updated first before the 
tendencies of v and w are calculated). This introduces no 
complication for the axisymmetric part of the flow in which 
u is not involved in the continuity equation. However, mass 
continuity in the wave equations requires that all three 
velocity components be updated simultaneously, using an 
updated pressure field (see Section 2.2.4). In that case a ten- 
tative value of U, based upon the pressure at the previous 
time step, is used in the Coriolis terms for v and w. 
Experience has shown that the difference in the results 
obtained between this update procedure and the standard 
forward differencing scheme is insignificant, while the gain 
in allowable time can be sizable when the rotation rate or 
the vertical stratification is large. 

To further permit longer time steps in some cases, there is 
an option of using ADI (alternating direction implicit) for 
the diffusion terms and those involving advection by the 
azimuthal mean flow. The AD1 method treats terms 
implicitly in one direction and explicitly in the other direc- 
tion at even time steps and reverses the directions of this 
treatment at odd time steps. The following is a description 
of the AD1 method applied to the vertical direction at odd 
time steps, using the Tequation as an example. Letting n + 1 
and n be the forecast and current time levels, respectively, 
the equation is discretized as follows: 

dT AT T”+‘-T” -N-= 
at - At At 

= -(DrTn+’ + D, T” + Dj, T”) 

+ K(L,ZT”+’ +L;T”+LfT”+‘) 

+ advection by other components. (2.6) 

Here, D,, D,, and D, represent the centered finite difference 
approximation of flux divergences due to the axisymmetric 
components of U, v, and w, respectively, and the L2’s 
represent the finite difference analog to the Laplacian 
components. The velocity components (evaluated at time 

level n) are included in our definitions of the D operators. 
The equations are rewritten in terms of AT and T”. This is 
done by adding and subtracting the terms on the right hand 
side that are at time step n. then replacing (T” + ’ - T”) with 
AT and gathering all the terms involving ATon the left hand 
side, 

[l -At(K(Lf+L;)-D,] AT 

= discretized form of the complete 

right hand side of the temperature 

equation involving values at time step n. (2.7) 

When (2.7) is expanded into matrix form, it is a 
tridiagonal matrix system for AT which is solved by 
the Gaussian elimination method. At even time steps, the 
r-derivatives on the left hand side are replaced by the 
&derivatives. Note that the 1” part of the diffusion terms is 
implicit and the 1. part of the advection terms is explicit at 
all time steps. 

2.2.4. Poisson Equation for Pressure. At each time step, 
a pressure field must be found which results in mass 
continuity (zero divergence) for the new velocity field. The 
procedure is similar to that of Williams [6]. A Poisson 
equation is derived by first writing the momentum 
equations in vector form 

g= -VlYI+G, (2.8 1 

where V is the velocity vector and G represents the terms on 
the right hand sides of the momentum equations other than 
the pressure gradient terms. 

Replacing the left hand side of (2.8) by forward differ- 
ences and multiplying both sides by At gives 

V”+‘-V”=(-VZ7*+G*)At, (2.9) 

where n + 1 and n are the current and previous time steps, 
respectively. Z7* is the change in pressure from the previous 
time step, and the gradient of the old 17 is included in the 
definition of G*. Applying the divergence operator to (2.9). 
setting the divergence of the new velocity vector to zero, and 
rearranging terms results in 

v2n* = V. W” + G* At) 
At ’ 

(2.10) 

Note that the term V . V” is retained, since there is some 
round-off divergence from the previous time step. 

The boundary condition used is that the normal 
derivative of Z7* is zero. This is consistent with our formula- 
tion of the pressure equation, in which the normal 
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derivative across the boundary is taken to be zero 
(justifiable because the momentum equation is not used to 
predict the boundary values). As explained by Williams 
[6], this condition results in ZZ* being actually a quantity 
equal to the physical pressure correction except at the 
boundaries. A correction to II* could then be applied in 
order to recover the physical quantity; however, that step is 
not necessary, since the boundary derivative of 17 is not 
required in solving the momentum equations. 

The Poisson equation with the Neumann boundary con- 
dition is solved using a direct method that is vectorized for 
the CRAY-XMP (Sweet [ 151). The solver has no problem 
with the fact that the solution for the axisymmetric compo- 
nent is not unique. It should be noted that the solution of 
the pressure equation is the most time consuming part of the 
model. For this reason, a control is provided that skips 
the pressure update if the maximum absolute value of the 
divergence is smaller than a prescribed (small) fraction of its 
4 component. This becomes particularly economical when 
long integrations are required for obtaining a steady state 
solution. 

2.2.5. FFT-Method for Computing Nonlinear Terms. 
Around an azimuthal ring, every dependent variable is 
expanded in a discrete complex Fourier series as 

q(Jj) = f Qk eXP(ik~j), 

k= -K 

(2.11) 

where AJ = 2nj/L and K is the truncation limit of wave- 
number k. The Fourier (or spectral) coefficients, Q,(r, 4, t) 

are computed by the following: 

Qk=i i q(Ai)exp(ikAi). 
,=I 

(2.12) 

Note that (2.12) is exact only if q(A,) exp(ikA,) is a truncated 
trigonometric series with maximum wavenumber less than 
or equal to L - 1. Otherwise, aliases would result. Hence, if 
q(Aj) represents a product of two real variables represen- 
table by the same spectral series with truncation K, then 
L > 3K+ 1 must be satisfied. The actual calculations of 
(2.11) and (2.12) are carried out by a vectorized fast Fourier 
transform (FFT) algorithm (Temperton [ 161). This FFT is 
the same as that used by the NCAR Community Climate 
Model which limits L to have multiplication factors of 2, 3, 
and 5 only. This does not place a constraint upon K, 
however, only a finite set of optimal values for L as a 
function K are tabulated in the program. 

The Fourier transform method described above is 
efficient in dealing with the nonlinear (quadratic) terms in 
the governing equations (2.1 t(2.4). In short, all variables 

required in the calculations are first synthesized into physi- 
cal space, where the quadratic factors (e.g., uu, u*, UT, etc.) 
in the nonlinear terms are calculated. The spectral coef- 
ficients of those terms are calculated using the FFT. These 
spectral coefficients are then used in the finite differencing 
scheme to obtain the nonlinear tendencies for each wave 
component. Note that the FFT is used only when a fully 
nonlinear run of the model is made (mode 5). In mode 4, the 
nonlinear terms (which do not involve wave-wave inter- 
actions) are calculated in spectral space, on the r-4 grid. 

2.2.6. Polar Cases. While the case considered here is an 
annulus which does not have a pole, we describe the proce- 
dure when there is a pole in the domain for the sake of com- 
pletely describing the numerical model for future reference. 
The pole is a singular point in the coordinate system (i.e., 
the horizontal velocity components are not well defined 
there), although there are no physical constraints on the 
flow. Fortunately, the grid is structured such that a polar 
boundary condition is required only for the u-component of 
velocity. The values for the other variables are arbitrary 
because they are multiplied by zero in the finite difference 
scheme. However, the polar value of u is used in the 
calculation of viscous stress 4 grid interval from the pole in 
order to calculate the viscous tendency for u at the point 1 
grid interval from the pole. By considering a small 
neighborhood of the pole, it is easily shown that the only 
Fourier component which contributes to a non-zero flow at 
the pole is the wavenumber one component. Therefore, the 
condition used for the axisymmetric and all wave com- 
ponents except wavenumber one is u = 0 at the pole. For the 
wavenumber one component, the boundary condition used 
is zero meridional gradient. This arises from the facts that 
the flow resulting from the wavenumber one component is 
symmetric across the pole and must have a finite Cartesian 
derivative (in any direction) at the pole. The zero 
meridional derivative is approximated by setting the polar 
value equal to the value 1 grid point from the pole, which 
is only first-order accurate. Physically, this equates to 
assuming no viscous stress on the cross-polar component of 
the flow. 

2.3. Model Validation 

The validation of the model includes the results presented 
in Section 3 and other numerical simulations of laboratory 
experiments in either cylindrical or spherical geometry. 
Miller and Butler [ 171 used the present model in modes 14 
to calculate the transition between axisymmetric and wave 
flow as seen in the annulus experiments of Fein [18], 
including hysteresis of the upper transition in the free-slip 
upper surface case. Excellent agreement was obtained, with 
the exception of rapidly rotating cases in which curvature 
effects on the free surface neglected by the model could be 
important. Comparisons with numerical simulations by 
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Hignett et al. [21] resulted in excellent agreement for two 
steady-wave cases in a rigid-lid annulus. We have also 
conducted numerical studies on the amplitude vacillation 
phenomena (Pfeffer et al. [22]) and found very good agree- 
ment with the laboratory experiments. In numerical simula- 
tions of the rotating hemispherical experiments of Hart et al. 
[19], we obtained time-dependent solutions which agreed 
with calculations using the model of Glatzmaier [20] with 
identical initial conditions. The spherical results and those 
on vacillation in the cylindrical annulus will be discussed in 
other papers. 

3. THE WILLIAMS STEADY WAVE CASE 

3.1. Comparisons of Equilibrated Flow 

Extensive model validations were performed for the 
steady-wave case of Williams [S-S] and Quon [9]. In all 
the results presented here, the number of grid points is 26 in 
both the radial and vertical directions (24 intervals between 
the physical boundaries). The grid is stretched such that the 
smallest grid interval near the boundaries is about half of 
the largest interval in the center of the annulus. Our chosen 
grid resolution is comparable to those used by Williams and 
Quon, although Quon selected a higher stretching factor 
near the boundary, and Williams had more grid points (33), 
with constant intervals. Note that Quon’s model is essen- 
tially the same as the present model in mode 4 with a single 
wave 5, while the Williams model is similar to the present 
model in the fully nonlinear mode. The model was also run 
in mode 1 to generate a steady axisymmetric solution and in 
mode 2 to compute the stability analysis with respect to the 
basic state given in the axisymmetric solution. In all cases, 
the model was integrated for a long enough time that the 
flow was virtually equilibrated (generally - 130 rotations). 

As shown in Fig. 1, the axisymmetric solution consists of 
a strong westerly jet at the top of the annulus, prevailing 
easterlies over the lower surface, and an absence of the 
Ferrell cell. These results agree with similar calculations by 
both Williams and Quon. Figure 1 also shows the tem- 
perature wave amplitude function for wave 5, which is one 
of the unstable eigenmodes associated with the given linear 
system. The corresponding growth rate (0.035 s- ‘) is 
actually smaller than that of wave 4, which is 0.044 s ‘. 

In order to simulate the live-fold symmetry assumed by 
Williams, the model was run in fully nonlinear mode with 
waves 5, 10, and 15 present. Several initial conditions were 
used which resulted in the same equilibrated flow, including 
( 1) the steady axisymmetric solution and a small amplitude 
wavenumber 5 eigenmode, (2) the axisymmetric solution 
and point perturbations in the temperature fields of each 
wave, and (3) the state of no motion and isothermal inte- 
rior, with point perturbations in temperature for each of the 
waves. The equilibrated solution, which is shown in Fig. 2, 

is virtually identical to that of Williams and similar to that 
of Quon. It is seen that westerlies extend to the surface and 
a strong Ferrell cell forms in the middle of the annulus. The 
zonal jet is reduced by 40% from 0.52 cm s ’ in rhe 
axisymmetric solution to 0.30 cm s ‘. The maximum wave 
temperature amplitude is about 0.72”C, and the relative size 
of the local maximum in the temperature wave amplitude 
near the inner wall is reduced considerably from that of the 
linear eigenmode (compare Figs. 1 D and 2D). The effects of 
spectral truncation on the solutions were also examined by 
varying the number of waves, still assuming five-fold 
symmetry. Only minor differences were detected among the 
cases in which one or more harmonic waves were included 
with the fundamental wave 5 (see Table II). 

In an attempt to reproduce the results in Quon [9], the 
model was also run in mode 4 with wave 5 only present. As 
in the fully nonlinear cases above, a variety of initial condi- 
tions were used, and no effect upon the equilibrated flow 
was observed. The resulting equilibrated azimuthal mean 
state and temperature wave amplitude are shown in Fig. 3. 
The maximum temperature amplitude near the center of the 
annulus is 0.5’C, which is about 40% smaller than that 
estimated from Fig. 8 in Quon’s paper. Smaller wave 
amplitude gives rise to weaker wave-mean interactions than 
in the fully nonlinear case. In comparison with the axisym- 
metric solutions shown in Fig. 1, the zonal jet is reduced by 
only about 10 %, in comparison with 40 % in the fully non- 
linear runs. The formation of the Ferrell cell is far less 
vigorous and is confined in the upper part of the fluid 
domain. The surface flow in the middle of the annulus 
remains easterly in contrast to westerly seen in Fig. 2 and in 
Quon’s results. Other runs with wave 5 only indicate that 
these results are insensitive to grid resolution. 

We also ran the present model with the single wave 4 
rather than wave 5. The resultant azimuthal mean state and 
wave amplitude were found to be more similar to the results 
of Williams and Quon than is the single wave 5 case shown 
above. A relevant point to note is that the amplitude of 
single wave 5 vacillates for a relatively long time before 

TABLE II 

Selected Results of Calculations 

Wave(s) Urn,, C’,,, i,,, imln IVIm, I~,Im.. Nu _..-~~~-.~ 
None 0.52 -0.077 0.031 0.0 0.52 -- 3.30 

5 0.47 -0.082 0.038 -0.001 0.60 0.49 4.59 
5, 10 0.34 -0.092 0.046 -0.014 0.55 0.71 6.32 

5, 10, 15 0.30 -0.100 0.048 -0.017 0.51 0.72 6.73 
5, 10, 15, 20 0.30 -0.099 0.048 -0.017 0.52 0.72 6.69 

4 0.39 -0.084 0.044 -0.012 0.63 0.85 5.91 

4, 8 0.27 -0.105 0.052 -0.021 0.54 0.95 7.17 
4, 8, 12 0.27 -0.106 0.053 - 0.023 0.54 0.93 7.23 

Units. U, IV], cm s -‘; 4. cm3 s-l: T, “C; Nu, dimensionless. 
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TEMPERATURE 
CONTOUR INTERVAL = 0.50 

STREAMFUNCTlON IAM = 0.0375 

CONTOUR INTERVAL = 0.005 MIN = - O.COlO 

AZIMUTHAL VELOCITY MAX= 0.466 
CONTOUR INTERVAL = 0.05 MN = - 0.062 

TEMPERATURE AMPLITUDE 
CONTOUR I~ERVAL - 0.05 MAX = 0.466 

FIG. 3. Calculated azimuthal mean fields for the calculation which used only wave 5 to represent the azimuthal variations. Panels (A) through (D) 
are as in Fig. 2. 

equilibrating to a steady state, while the single wave 4 
equilibrates rapidly with fewer vacillation cycles (see Fig. 4). 
The integrations that resulted in Fig. 4 were initialized with 
the steady axisymmetric state plus the corresponding linear 
eigenmodes with small amplitude, the latter having been 
obtained from mode 2 integrations. 

Table II summarizes the results discussed above in terms 
of maximum and minimum azimuthal velocity (U) and 
meridional streamfunction (Ic/) of the azimuthal mean 
flow, maximum flow speed (IV1 ), maximum temperature 
amplitude of the dominant wave (I Tk I), and Nusselt 
number (Nu-ratio of the integrated boundary heat flux to 
that of a conductive equilibrium state). The streamfunction 
is the negative of that defined by Williams [7] and Quon 
191. 

3.2. Wavenumber Selection 

Several additional experiments were conducted to 
investigate the behavior of wavenumber selection. In two 
experiments, the initial condition for all waves was very 
small point perturbations in the temperature field, and the 
steady axisymmetric solution was used for the initial 
axisymmetric part of the flow. The first experiment was con- 
ducted with the model in mode 4 with waves 4 and 5 only, 
and the other in mode 5 with waves 1 through 15. In both 
cases, wave 4 eventually dominated and the contribution 
from wave 5 was negligible. The equilibrated flow with 15 
waves present was essentially identical to that when waves 
4, 8, and 12 only were used. The selection of wave 4 at this 
point in parameter space contrasts with the selection of 
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FIG. 4. Wave kinetic energy as a function of time for two single-wave 
calculations: (A) wave 5; (B) wave 4. 

wave 5 indicated by Williams [7], who conducted 
preliminary calculations in the full annulus domain using 
“medium resolution.” The different result does not 
necessarily represent a disagreement between the two 
models, since the issues of initial conditions and grid 
resolution (which were not specified by Williams) may play 
important roles in the wavenumber selection. 

In another set of two experiments with the model in fully 
nonlinear mode (15 waves), we found that wave 5 retains 
dominance when it is dominant in the initial conditions. 
The initial conditions used in these calculations were equi- 
librated wave-5 flows: (1) the single-wave-5 solution and (2) 
the multiple-wave solution (waves 5, 10, and 15). Waves 14 
were initially given small point perturbations in the tem- 
perature field. The resulting equilibrated flows in these two 
experiments were essentially the same as that for the run 
with waves 5, 10, and 15 only present. The fact that the 
dominant wave in the equilibrated flow depends upon the 
initial conditions is analogous to hysteresis phenomena that 

have been frequently observed in laboratory experiment> 
(e.g., Fein [18], Hignett et ul. 1211). This result suggests 
that hysteresis is a possible reason for the discrepancy in 
wavenumber selection between our calculations described 
in the preceding paragraph (i.e., when the initial amplitudes 
of all waves are small) and Williams’ [7] result. Williams 
did not give information on the initialization procedure for 
his preliminary calculations in the full annulus domain. lf he 
had initialized the calculation with a previous result in 
which wave 5 was dominant (perhaps from a nearby point 
in parameter space), then wave 5 may have continued to 
dominate because of the hysteresis effect. 

Other calculations indicate that the hysteresis in 
wavenumber selection for this case occurs only when using 
a fully nonlinear model. In initial value experiments with 
waves 4 and 5 only (no wave--wave interaction), we found 
that wave 4 eventually becomes dominant and wave 5 
decays regardless of the relative sizes of initial amplitudes 
given to these two waves. This is ndt to imply, however. that 
hysteresis in general is a result of wave-wave interactions. 
As pointed out earlier, Miller and Bulter [ 171 simulated a 
hysteresis phenomenon observed in the laboratory experi- 
ments of Fein [ 1 S] by using the present model in mode 4. 
i.e., in which only wave-mean interactions were involved. 

4. SUMMARY 

We have described a newly developed numerical model 
for studying buoyantly driven, rotating flows in spherical 
and cylindrical geometries when the Boussinesq approxima- 
tion is valid and when centrifugal effects upon the free upper 
surface can be ignored. The model uses a hybrid spectral 
and finite difference technique to approximate the govern- 
ing differential equations. Because of the flexibilities in the 
choices of geometric framework and boundary conditions, 
the present model is suitable to simulate the flows observed 
in the rotating annulus experiments (either side-heated or 
bottom-heated), and in the Spacelab Geophysical Fluid 
Flow Cell experiment (Hart et al. [ 191). The model also 
allows various modes of integrations which are useful for 
conducting sensitivity experiments and performing linear 
stability analyses. 

Calculations have been performed to reexamine the 
steady baroclinic wave case of Williams Es-81 and Quon 
[9]. Excellent agreement between the present model and 
that of Williams is achieved when 1 or more harmonic 
waves are included with the fundamental wave 5 in the 
fully nonlinear model integrations. However, a significant 
disagreement between the present model and Quon [9] 
is obtained when only wave 5 is considered. The dis- 
agreements are seen in the smaller wave amplitude and con- 
sequently in a much smaller effect upon the azimuthal mean 
state than those obtained by Quon. Since the equations and 
numerical technique used by Quon are essentially the same 
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as the present model, the reasons for the discrepancy are not 
evident. Because the present model agrees very well with the 
Williams results and with the laboratory experiments of 
Fein [ 181 (see Miller and Butler [ 17]), the discrepancies 
appear to cast some doubt upon the validity of Quon’s 
solution. 

In the 15-wave, fully nonlinear integrations, the equi- 
librated solution of the Williams case depend upon initial 
conditions. Wave 4 eventually dominates if all wave 
amplitudes are initially very small. Wave 5 continues to 
dominate if the initial amplitude of wave 5 is large and 
that of wave 4 is small. The Williams steady wave case is 
identified as a case of multiple equilibria in which there 
exists hysteresis in the wavenumber selections. Similar 
calculations in which wave-wave interactions were omitted 
did not result in hysteresis. 

Many numerical studies for the rotating annulus 
experiments and for the spherical Spacelab experiments 
using the present model are underway. The model’s 
capability makes it a valuable tool to examine some very 
interesting geophysical flow problems such as hysteresis, 
amplitude vacillation, structural vacillation, and 
geostrophic turbulence (Pfeffer et al. [22]). The results of 
these studies can be applied toward improving our under- 
standing of the dynamics of earth’s atmosphere and oceans. 
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